Product Rule

Statement

\frac{d}{dx}\left[ f(x)g(x) \right]=f(x)g^\prime(x) + g(x)f^\prime(x)

Proof

By the definition of the derivative:

\frac{d}{dx}\left[ f(x)g(x) \right]&=&\displaystyle\lim_{h\to 0}\frac{f(x+h)g(x+h) - f(x)g(x)}{h}

-f(x+h)g(x) + f(x+h)g(x)=0. Add this to the numerator of the equation above. Since it equals zero, it won’t change the value of the numerator:

\frac{d}{dx}\left[ f(x)g(x) \right]&=&\displaystyle\lim_{h\to 0}\frac{f(x+h)g(x+h) -f(x+h)g(x) + f(x+h)g(x)- f(x)g(x)}{h}

Rearrange:

\frac{d}{dx}\left[ f(x)g(x)\right]  = \displaystyle\lim_{h\to 0}\left[ f(x+h)\frac{g(x+h)-g(x)}{h} + g(x)\frac{f(x+h)-f(x)}{h} \right]

This is equivalent to:

\frac{d}{dx}\left[ f(x)g(x)\right]  = \underbrace{\left( \displaystyle\lim_{h\to 0}f(x+h)\right)}_{f(x)}\underbrace{ \left(\displaystyle\lim_{h\to 0}\frac{g(x+h)-g(x)}{h}\right)}_{g^\prime(x)} + \underbrace{\left(\displaystyle\lim_{h\to 0}g(x)\right)}_{g(x)}\underbrace{\left(\displaystyle\lim_{h\to 0}\frac{f(x+h)-f(x)}{h} \right)}_{f^\prime(x)}

So,

\frac{d}{dx}\left[ f(x)g(x)\right] =f(x)g^\prime(x) + g(x)f^\prime(x)

which is what we were trying to prove.