We've already seen that:

$$
\begin{equation*}
\nabla_{\mu} V^{\nu}=\partial_{\mu} V^{\nu}+\Gamma_{\mu \lambda}^{\nu} V^{\lambda} \tag{2}
\end{equation*}
$$

We postulate that we can come up with a similar equation for covectors:

$$
\nabla_{\mu} V_{\mu}=\partial_{\mu} V_{\nu}+\gamma_{\mu \nu}^{\lambda} V_{\lambda} \quad \text { eq (2) }
$$

Although we won't prove it here, just from the structure of these equations, one can imagine that, like eq (1), eq (2) transforms like a tensor.

To relate the two equations, we make two assumptions:
$\nabla_{\mu} \delta_{\lambda}^{\nu}=0$ (which is reasonable because the delta function contains 1's and 0 's and the derivative of a constant is 0 .)
For a scalar $\phi, \nabla_{\mu} \phi=\partial_{\mu} \phi$ (which makes sense since a scalar is the same in all coordinate systems. The change in basis vectors with change in coordinate system, therefore, would not be expected to have any effect on a scalar. Thus, no correction to the normal partial derivative should be needed.)

Given this, let's calculate the derivative of a scalar, $\nabla_{\mu}\left(V_{\sigma} W^{\sigma}\right) .\left(V_{\sigma} W^{\sigma}\right.$ is a scalar because it's the inner product i.e., dot product, of two vectors). We have:

$$
\begin{align*}
\nabla_{\mu}\left(V_{\sigma} W^{\sigma}\right) & =\nabla_{\mu}\left(\delta_{\lambda}^{\sigma} V_{\sigma} W^{\lambda}\right) \\
& =\left(V_{\sigma} W^{\lambda}\right) \nabla_{\mu} \delta_{\lambda}^{\sigma}+\nabla_{\mu}\left(V_{\sigma} W^{\sigma}\right) \\
& =0+V_{\sigma}\left(\nabla_{\mu} W^{\sigma}\right)+W^{\sigma}\left(\nabla_{\mu} V_{\sigma}\right) \\
& =V_{\sigma}\left(\partial W^{\sigma}+\Gamma_{\mu \lambda}^{\sigma} W^{\lambda}\right)+W^{\sigma}\left(\partial V_{\sigma}+\gamma_{\mu \sigma}^{\lambda} V_{\lambda}\right) \\
& =V_{\sigma} \partial W^{\sigma}+V_{\sigma} \Gamma_{\mu \lambda}^{\sigma} W^{\lambda}+W^{\sigma} \partial V_{\sigma}+W^{\sigma} \gamma_{\mu \sigma}^{\lambda} V_{\lambda} \\
& =V_{\sigma} \partial W^{\sigma}+W^{\sigma} \partial V_{\sigma}+V_{\sigma} \Gamma_{\mu \lambda}^{\sigma} W^{\lambda}+W^{\sigma} \gamma_{\mu \sigma}^{\lambda} V_{\lambda} \tag{3}
\end{align*}
$$

We use our second assumption to say:

$$
\begin{aligned}
\nabla_{\mu}\left(V_{\sigma} W^{\sigma}\right) & =\partial_{\mu}\left(V_{\sigma} W^{\sigma}\right) \\
& =V_{\sigma}\left(\partial_{\mu} W^{\sigma}\right)+W^{\sigma}\left(\partial_{\mu} V_{\sigma}\right) \quad \text { eq (4) }
\end{aligned}
$$

Substituting, eq (4) into eq (3), we get:

$$
\nabla_{\mu}\left(V_{\sigma} W^{\sigma}\right)=\underbrace{V_{\sigma} \partial W^{\sigma}+W^{\sigma} \partial V_{\sigma}}_{\nabla_{\mu}\left(V_{\sigma} W^{\sigma}\right)}+V_{\sigma} \Gamma_{\mu \lambda}^{\sigma} W^{\lambda}+W^{\sigma} \gamma_{\mu \sigma}^{\lambda} V_{\lambda} \quad \text { eq (5) }
$$

Therefore:

$$
0=\Gamma_{\mu \lambda}^{\sigma} V_{\sigma} W^{\lambda}+\gamma_{\mu \sigma}^{\lambda} W^{\sigma} V_{\lambda} \quad \text { eq (6) }
$$

Relabeling dummy indices and rearranging terms gives us:

$$
\gamma_{\mu \sigma}^{\lambda} W^{\sigma} V_{\lambda}=-\Gamma_{\mu \sigma}^{\lambda} W^{\sigma} V_{\lambda} \quad \text { eq (7) }
$$

So, in general:

$$
\gamma_{\mu \sigma}^{\lambda}=-\Gamma_{\mu \sigma}^{\lambda} \quad \text { eq (8) }
$$

Substituting eq (8) into eq (2), we are left with:

$$
\nabla_{\mu} V_{\mu}=\partial_{\mu} V_{\nu}-\Gamma_{\mu \nu}^{\lambda} V_{\lambda} \quad \text { eq (9) }
$$

Which is what we sought to prove.

