
We’ve already seen that:





We postulate that we can come up with a similar equation for covectors:





Although we won’t prove it here, just from the structure of these 
equations, one can imagine that, like eq (1), eq (2) transforms like a 
tensor.


To relate the two equations, we make two assumptions:


 (which is reasonable because the delta function contains 1’s 
and 0’s and the derivative of a constant is 0.)


For a scalar ,  (which makes sense since a scalar is the same 
in all coordinate systems. The change in basis vectors with change in 
coordinate system, therefore, would not be expected to have any 
effect on a scalar. Thus, no correction to the normal partial derivative 
should be needed.)


Given this, let’s calculate the derivative of a scalar, . (  is 
a scalar because it’s the inner product i.e., dot product, of two vectors). 
We have:


∇μVν = ∂μVν + Γν
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μνVλ eq (2)

∇μδν
λ = 0

ϕ ∇μϕ = ∂μϕ

∇μ(VσWσ) VσWσ

∇μ(VσWσ) = ∇μ(δσ
λ VσWλ)

= (VσWλ)∇μδσ
λ + ∇μ(VσWσ)
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We use our second assumption to say:





Substituting, eq (4) into eq (3), we get:





Therefore:





Relabeling dummy indices and rearranging terms gives us:





So, in general:





Substituting eq (8) into eq (2), we are left with:





Which is what we sought to prove.


∇μ(VσWσ) = ∂μ(VσWσ)
= Vσ(∂μWσ) + Wσ(∂μVσ) eq (4)

∇μ(VσWσ) = Vσ∂Wσ + Wσ∂Vσ

∇μ(VσWσ)

+ VσΓσ
μλW

λ + Wσγλ
μσVλ eq (5)

0 = Γσ
μλVσWλ + γλ

μσWσVλ eq (6)

γλ
μσWσVλ = − Γλ

μσWσVλ eq (7)

γλ
μσ = − Γλ

μσ eq (8)

∇μVμ = ∂μVν − Γλ
μνVλ eq (9)


