This explanatory note is adapted from "Covariant Derivative" uploaded by Andrew Dotson, 11 June 2019, https://www.youtube.com/watch? $\mathrm{v}=$ TVeLh5LiEl8

Established in previous explanatory notes on this page were that:

1) Taking the derivative of a tensor does not necessarily yield another tensor. Instead, when we try to transform such a derivative, we come up with a part that looks like a correct tensor transformation plus additional second derivative terms like:
$\Gamma_{\mu \nu}^{\lambda}=\frac{\partial x^{\lambda}}{\partial X^{\alpha}} \frac{\partial^{2} X^{\alpha}}{\partial x^{\mu} \partial x^{\nu}}$
We called such second derivative terms affine connections.
2). The affine connection is not a tensor. When we perform a coordinate transformation on the affine connection, we get:

$$
\begin{equation*}
\Gamma_{\mu \nu}^{\lambda}=\frac{\partial x^{\lambda \prime}}{\partial x^{\rho}} \frac{\partial x^{\tau}}{\partial x^{\mu^{\prime}}} \frac{\partial x^{\alpha}}{\partial x^{\nu^{\prime}}} \Gamma_{\tau \alpha}^{\rho}-\frac{\partial x^{\alpha}}{\partial x^{\mu^{\prime}}} \frac{\partial x^{\rho}}{\partial x^{\nu^{\prime}}} \frac{\partial^{2} x^{\lambda^{\prime}}}{\partial x^{\rho} x^{\alpha}} \tag{2}
\end{equation*}
$$

Our goal in this article is to modify the way we take derivatives such that the result is a tensor.

Let's start by taking the derivative of a 4-vector, $\frac{\partial A^{\lambda^{\prime}}}{\partial x^{\mu^{\prime}}}$. We know how vectors transform:

$$
\begin{equation*}
A^{\lambda^{\prime}}=\frac{\partial x^{\lambda^{\prime}}}{\partial x^{\nu}} A^{\nu} \tag{3}
\end{equation*}
$$

Thus, we have:

$$
\begin{align*}
& \frac{\partial A^{\lambda^{\prime}}}{\partial x^{\mu^{\prime}}}=\frac{\partial}{\partial x^{\mu^{\prime}}}\left(\frac{\partial x^{\lambda^{\prime}}}{\partial x^{\nu}} A^{\nu}\right) \\
& =\frac{\partial x^{\sigma}}{\partial x^{\mu^{\prime}}} \frac{\partial}{\partial x^{\sigma}}\left(\frac{\partial x^{\lambda^{\prime}}}{\partial x^{\nu}} A^{\nu}\right) \\
& =\frac{\partial x^{\sigma}}{\partial x^{\mu^{\prime}}} \frac{\partial^{2} x^{\lambda^{\prime}}}{\partial x^{\sigma} \partial x^{\nu}} A^{\nu}+\frac{\partial x^{\sigma}}{\partial x^{\mu^{\prime}}} \frac{\partial x^{\lambda^{\prime}}}{\partial x^{\nu}} \frac{\partial A^{\nu}}{\partial x^{\sigma}} \\
& \text { "Offending" } \\
& \text { 2nd } \\
& \text { derivative } \\
& \text { term } \\
& \text { Correct } \\
& \text { transformation } \\
& \text { for a rank } 2 \\
& \text { mixed tensor. } \tag{4}
\end{align*}
$$

We'd like to define an operation, the covariant derivative, that will incorporate the affine connection and cancel the offending 2nd derivative term in eq (4)-an equation of the form:

$$
\begin{equation*}
D_{\mu} A^{\lambda^{\prime}} \equiv \frac{\partial A^{\lambda^{\prime}}}{\partial x^{\mu^{\prime}}}+\Gamma_{\mu^{\prime} \nu^{\prime}}^{\lambda^{\prime}} A^{\nu^{\prime}} \tag{5}
\end{equation*}
$$

Eq (4) gives us an expression for $\frac{\partial A^{\lambda^{\prime}}}{\partial x^{\mu^{\prime}}}$. We substitute that into eq (5). Then we plug the value for $\Gamma_{\mu^{\prime} \nu^{\prime}}^{\lambda^{\prime}}$ given in eq (2) into eq (5) and distribute it over A with unprimed indices:

$$
\begin{align*}
D_{\mu} A^{\lambda^{\prime}} & =\frac{\partial x^{\sigma}}{\partial x^{\mu^{\prime}}} \frac{\partial^{2} x^{\lambda^{\prime}}}{\partial x^{\sigma} \partial x^{\nu}} A^{\nu}+\frac{\partial x^{\sigma}}{\partial x^{\mu^{\prime}}} \frac{\partial x^{\lambda^{\prime}}}{\partial x^{\nu}} \frac{\partial A^{\nu}}{\partial x^{\sigma}} \tag{6}\\
& +\frac{\partial x^{\lambda \prime}}{\partial x^{\rho}} \frac{\partial x^{\tau}}{\partial x^{\mu^{\prime}}} \frac{\partial x^{\alpha}}{\partial x^{\nu^{\prime}}} \Gamma_{\tau \alpha}^{\rho} \frac{\partial x^{\nu^{\prime}}}{\partial x^{\beta}} A^{\beta}-\frac{\partial x^{\alpha}}{\partial x^{\mu^{\prime}}} \frac{\partial x^{\rho}}{\partial x^{\nu^{\prime}}} \frac{\partial^{2} x^{\lambda^{\prime}}}{\partial x^{\rho} x^{\alpha}} \frac{\partial x^{\nu^{\prime}}}{\partial x^{\beta}} A^{\beta}
\end{align*}
$$

Next we need to simplify eq (6) by pulling out some delta functions. We can't find any in the first two terms, but we can in the last two terms.

$$
\begin{aligned}
& D_{\mu} A^{\lambda^{\prime}}=\frac{\partial x^{\sigma}}{\partial x^{\mu^{\prime}}} \frac{\partial^{2} x^{\lambda^{\prime}}}{\partial x^{\sigma} \partial x^{\nu}} A^{\nu}+\frac{\partial x^{\sigma}}{\partial x^{\mu^{\prime}}} \frac{\partial x^{\lambda^{\prime}}}{\partial x^{\nu}} \frac{\partial A^{\nu}}{\partial x^{\sigma}} \\
&+\frac{\partial x^{\lambda \prime}}{\partial x^{\rho}} \frac{\partial x^{\tau}}{\partial x^{\mu^{\prime}}} \frac{\partial x^{\alpha}}{\partial x^{\nu^{\prime}}} \Gamma_{\tau \alpha}^{\rho} \frac{\partial x^{\nu^{\prime}}}{\partial x^{\beta}} A^{\beta}-\frac{\partial x^{\alpha}}{\partial x^{\mu^{\prime}}} \frac{\partial x^{\rho}}{\partial x^{\nu^{\prime}}} \frac{\partial^{2} x^{\lambda^{\prime}}}{\partial x^{\rho} x^{\alpha}} \frac{\partial x^{\nu^{\prime}}}{\partial x^{\beta}} A^{\beta} \\
& \delta_{\beta}^{\alpha} \delta_{\beta}^{\rho}
\end{aligned}
$$

The terms that make up the delta functions disappear from eq (7) and we contract the indices on the A^{β} terms to get:

$$
\begin{align*}
& =\frac{\partial x^{\sigma}}{\partial x^{\mu^{\prime}}} \frac{\partial^{2} x^{\lambda^{\prime}}}{\partial x^{\sigma} \partial x^{\nu}} A^{\nu}+\frac{\partial x^{\sigma}}{\partial x^{\mu^{\prime}}} \frac{\partial x^{\lambda^{\prime}}}{\partial x^{\nu}} \frac{\partial A^{\nu}}{\partial x^{\sigma}} \\
& +\frac{\partial x^{\lambda \prime}}{\partial x^{\rho}} \frac{\partial x^{\tau}}{\partial x^{\mu^{\prime}}} \Gamma_{\tau \alpha}^{\rho} A^{\alpha}-\frac{\partial x^{\alpha}}{\partial x^{\mu^{\prime}}} \frac{\partial^{2} x^{\lambda^{\prime}}}{\partial x^{\rho} x^{\alpha}} A^{\rho} \tag{8}
\end{align*}
$$

rename indices : $\rho \rightarrow \nu \quad$ rename indices : $\alpha \rightarrow \sigma$

$$
\tau \rightarrow \sigma \quad \rho \rightarrow \nu
$$

Next we rename dummy indices. When we do this, the first and fourth terms cancel:

$$
\begin{align*}
& =\frac{\partial x^{\sigma}}{\partial x^{\prime \prime}} \frac{\partial^{2} x^{\lambda^{\prime}}}{\partial x^{\sigma} \partial x^{\nu}} A^{\nu}+\frac{\partial x^{\sigma}}{\partial x^{\mu^{\prime}}} \frac{\partial x^{\lambda^{\prime}}}{\partial x^{\nu}} \frac{\partial A^{\nu}}{\partial x^{\sigma}} \tag{9}\\
& +\frac{\partial x^{\sigma}}{\partial x^{\mu^{\prime}}} \frac{\partial x^{\lambda^{\prime}}}{\partial x^{\nu}} \Gamma_{\tau \alpha}^{\rho} A^{\alpha}-\frac{\partial x^{\sigma}}{\partial x^{\sigma}} \frac{\partial^{2} x^{\lambda^{\prime}}}{\partial x^{\sigma}} A^{\nu}
\end{align*}
$$

We factor out $\frac{\partial x^{\sigma}}{\partial x^{\mu^{\prime}}} \frac{\partial x^{\lambda^{\prime}}}{\partial x^{\nu}}$. That leaves us with:

$$
\begin{equation*}
D_{\mu^{\prime}} A^{\nu^{\prime}}=\frac{\partial x^{\sigma}}{\partial x^{\mu^{\prime}}} \frac{\partial x^{\lambda^{\prime}}}{\partial x^{\nu}}\left(\frac{\partial A^{\nu}}{\partial x^{\sigma}}+\Gamma_{\sigma \alpha}^{\nu} A^{\alpha}\right) \tag{10}
\end{equation*}
$$

Eq (11), with the index cancelations, shows us that the covariant derivative (the thing in parentheses in eq 10) does, indeed, transform as a tensor:

$$
\begin{equation*}
D_{\mu^{\prime}} A^{\nu^{\prime}}=\frac{\partial x^{\sigma}}{\partial x^{\mu^{\prime}}} \frac{\partial x^{\lambda^{\prime}}}{\partial x^{\nLeftarrow}}\left(\frac{\partial A^{\varnothing}}{\partial x^{\sigma}}+\Gamma_{\sigma \alpha \alpha^{\mathscr{A}}} A^{\nprec}\right) \tag{11}
\end{equation*}
$$

