This explanatory note is adapted from “Covariant Derivative” uploaded
by Andrew Dotson, 11 June 2019, https://www.youtube.com/watch?
v=TVeLhSLiEI8

Established in previous explanatory notes on this page were that:

1) Taking the derivative of a tensor does not necessarily yield another
tensor. Instead, when we try to transform such a derivative, we come up
with a part that looks like a correct tensor transformation plus additional
second derivative terms like:
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We called such second derivative terms affine connections.

2). The affine connection is not a tensor. When we perform a coordinate
transformation on the affine connection, we get:
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Our goal in this article 1s to modify the way we take derivatives such

that the result 1s a tensor.
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We know how

Let’s start by taking the derivative of a 4-vector,
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Thus, we have:
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We’d like to define an operation, the covariant derivative, that will
incorporate the affine connection and cancel the offending 2nd
derivative term in eq (4)—an equation of the form:
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Eq (4) gives us an expression for s We substitute that into eq (5).
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Then we plug the value for Fﬂ,y, given in eq (2) into eq (5) and distribute
it over 4 with unprimed indices:
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Next we need to simplify eq (6) by pulling out some delta functions. We
can’t find any in the first two terms, but we can in the last two terms.
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The terms that make up the delta functions disappear from eq (7) and we
contract the indices on the A” terms to get:
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Next we rename dummy indices. When we do this, the first and fourth
terms cancel:
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.That leaves us with:

We factor out
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Eq (11), with the index cancelations, shows us that the covariant
derivative (the thing in parentheses in eq 10) does, indeed, transform as
a tensor:

. ox® ox* [ 0AY eq (11)
DAY = — +T¥ A
oxH ox?



